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Temperature coefficient of resistivity and 
deviation from Matthiessen's rule in a combined 
Soffer-Cottey model 

C. R. TELLIER 
Laboratoire de Chronom#trie, Electronique et PiezoelectricitY, Ecole Nationale Sup&ieure de 
M6canique et des Microtechniques, La Bouloie, Route de Gray, 25030 - Besancon Cedex, 
France 

In the framework of a combined Soffer-Cottey model the temperature coefficient of resistivity 
is calculated by incorporating surface roughness and angular effects. In the limiting case of 
moderately rough surfaces a linear relation is proposed. Correlated size effects in the product 
of resistivity x temperature coefficient of resistivity are studied and vanishing of the deviation 
from Matthiessen's rule is predicted except for rough surfaces and for very thin films. Tentative 
attempts to fit previously published data on the basis of the present model are undertaken. 
Difficulties in controlling morphology and geometrical surface properties of films with various 
thicknesses are outlined. As a consequence a special emphasis is placed on procedures for 
overcoming these problems. 

1. Introduction 
Introduction of a constant specularity parameter, p, is 
a simple solution by means of which the development 
of theoretical models describing size effects in the 
conductivity of thin metal films, such as the well- 
known Fuchs-Sondheimer [1, 2] or Cottey [3] models, 
can be achieved. Among the many experiments on 
thin metal films graphical determinations of the 
specularity parameter were performed [4-6] from 
resistivity measurements. However previously pub- 
lished results on silver [7-9], copper [10, 11] and zinc 
films [12] do not agree very well with the predictions 
of these models even if the contribution of imperfec- 
tions to transport properties seems to remain neglig- 
ible [7, 8, l 1, 12] at large thicknesses. Some authors 
[7, 8, 11, 12] advanced arguments to suggest that these 
discrepancies can be understood in terms of a thick- 
ness dependent specularity parameter. 

Hence in the past few years interest in theories 
[13 18] reJating the specularity parameter to the root 
mean square surface roughness, r, [13-17] or to the 
angle, 0, of incidence of the electron at the surface 
[15, 16, 18] has been revived. In particular some 
attempts have been made by Sambles and co-workers 
[19-22] to show that resistivity data can be better 
explained by the Softer model [15] than the Fuchs- 
Sondheimer theory. Really the Softer model presents 
the advantages to improve the Fuchs-Sondheimer 
model of surface scattering and to lead to a simple 
expression for the specularity parameter when the 
correlation length along the surface is taken to be 
zero2 In effect a significant result is that in the case of 
uncorrelated surfaces the specularity parameter p 
which includes the influence of the r.m.s, surface 

roughness, r, and of the angle, 0, of incidence is simply 
expressed as [15] 

where 2c is the wavelength associated with the carrier. 
Recently combining with Cottey and Softer models 
Tellier [23, 24] proposed an alternative method which 
offers analytical equations for the reduced film con- 
ductivity and allows an easy experimental determi- 
nation [24] of the r.m.s, surface roughness in thin 
films. 

However to discuss the validity of a model it is 
necessary to undertake a systematic comparison of the 
theoretical predictions of this model with the experi- 
mental results on various transport parameters. A 
critical analysis of the observed size effects is possible 
if at least the thickness dependence of the temperature 
coefficient of resistivity (t.c.r.) and of the conductivity 
were measured simultaneously. Thus the purpose of 
this paper is to derive a new analytical expression for 
the film t.c.r, in which the effects of the r.m.s, surface 
roughness and the general case of oblique incidence are 
included in order to reinterpret previously published 
data. 

2. Analytical equation for the t.c.r. 
Combining the Cottey and Softer models the film 
conductivity, at, is finally expressed in terms of the 
reduced film thickness, k = d/2o, and of the reduced 
roughness, r/2c. In effect, the general form for the 
reduced conductivity is 

~r/a o = F(~c) (2) 

0022-2461/87 $03.00 + . 12 © 1987 Chapman and Hall Ltd. 2043 



with 

F(~:) = ~ l l n \ K  2 _  ~c + l 

1 
- 2--A In (1 + A )  (3)  

where ao is the background conductivity and the vari- 
ables K and A are given by 

= A 1/3 (4) 

1 (47zr) 2 
A(r ,k)  = ~ ~ (5) 

Considering the following usual assumptions [6, 25] 

1. The rigid band model is valid 
2. The number of conduction electrons per unit 

volume is temperature independent in the experimen- 
tal range 

3. The thermal expansion of the film thickness, d, is 
negligible with respect to that of the background mean 
free path, 2o 

4. The r.m.s, surface roughness remains unaffected 
by thermal variations as expected for well-annealed 
metal films 

which are generally retained to interpret data on film 
t.c.r, and further neglecting the thermal expansion 
mismatch between the film and its substrate, the 
logarithmic differentiation of Equation 2 gives 

daf da 0 dF(~c) 
- + - -  (6)  

af ao FOc) 

Since the differential of FOc) can be expressed as 

d~ 
dF(x) = - - [ F 0 c )  + H(tc)] (7) 

K 

with 

H ( ~ )  3 LF A 
-- - 2-A ~c + 1)(tc 2 -  ~c + 1) 1 + A 

+ 51n(1 + A) (8) 

Equation 6 can be transformed into 

dar da 0 1 d~c 
- - -  + - - - - [ F 0 ¢ )  + H ( x ) ]  (9)  

af o- 0 F(x) K 

Turning to Equations 4 and 5 it follows that 

dx d20 
3 - (10) 

K )-0 

Inserting Equation 10 into Equation 9 and taking into 
account that under assumptions 1 and 2 the bulk t.c.r. 
is 

1 da0 1 d),0 
rio = a o d T -  20 dT (11) 

the final expression for the film t.c.r., fir, which is 
defined as 

1 da r 
flf - (12)  

af dT 

becomes 

fir = flo 1 - ~ 1 + F---~)J (13) 

At this point it should be noticed that t.c.r. 
measurements are generally performed at tempera- 
tures close to room temperature [7, 8, 10-12, 26-32] 
so that for continuous films of the most common 
metals the reduced thickness does not take values 
lower than 0.2. Thus if the reduced roughness does not 
exceed 0.04 the dimensional parameter tc remains 
larger than unity. In these conditions it may be of 
interest to derive an asymptotic expression for the 
film t.c.r, in the limiting case of high values of the 
parameter to. 

Expanding Equation 8 in the power series of reci- 
procal ~c and further neglecting terms of power higher 
than four gives the H(~c) function in the form 

1 
H(t¢) _ 2tc3 1, ~ > 1 (14) 

Since in the limit of large ~c the conductivity ratio 
reduces to [24] 

af 1 
- -  "~ 1 tc > 1 (15 )  
O" 0 8 K  3 ' 

the t.c.r, ratio is readily found to be 

Br 1 
fi0 1 8tc3, x > 1 (16) 

that is just the result that one can easily obtain 
using the approximate Equation 15 for the film 
conductivity. 

3 .  T h e o r e t i c a l  r e s u l t s  

3.1. The reduced t.c.r. 
Equations 2 and 13 can be evaluated numerically with 
the aid of a pocket calculator, but for convenience the 
theoretical curves presented in this section are drawn 
using a microcomputer. Fig. 1 illustrates for different 
values of the reduced roughness the limitation of the 
bulk mean free path by the film surfaces. To make the 
comparison with the Cottey model more easy the vari- 
ation of the t.c.r, ratio as a function of the reduced 
thickness are also shown in Fig. 2 for two values of the 
constant specularity parameter. In Fig. 3 the dimen- 
sionless reduced t.c.r., flf/fi0, is plotted against the 
r.m.s, reduced roughness, r/2 c, according to Equation 
13, the reduced thickness, k, acting as a parameter. 

Several points arising from these figures merit some 
comments 

1. The t.c.r, ratio exhibits a thickness dependence in 
accord, at first sight, with other size effect theories. 
However turning our attention (Fig. 2) to the Cottey 
curves and to the curve obtained for r/2c = 0.06 (i.e. 
forp(r,  0) -~ 0.57 at normal incidence) it is clear that 
the incorporation of both the surface roughness and 
the angular dependence in this transport parameter 
results in a serious decrease of the overall size effect. 

2. For the reduced thickness in the range 0.1 to 10 
the reduced t.c.r, is dominated by the surface rough- 
ness. However as expected the size effect vanishes in 
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Figure 1 The reduced t.c.r., fir//70, against 
the reduced thickness, k, for different 
values of the reduced roughness, r/2~. a, b o 
c, d, e, f: theoretical curves for the respec- 
tive r/,~ values of 0.01, 0.04, 0.I, 0.4~ l 
and 4. 

the limit of very small r/2c, i.e. when the film surface 
has zero roughness. 

3. With increasing reduced roughness (r/2o > 0.4) 
the thickness dependence of the t.c.r, ratio has a 
tendency to be masked by the very predominant surface 
roughness effect and it seems that the film t.c.r, cannot 
reach the bulk t.c.r, even for very thick films. But in a 
preceding paper [23] an examination of numerical 
results for the reduced conductivity obtained by extend- 
ing either the Cottey [23] or the Fuchs-Sondheimer 
[19] theory has revealed that the range of applicability 
of Equation 2 extends to about r/2c ~ 0.2. Since to 
our knowledge the combined Fuchs-Sondheimer and 
Softer model has not yet been utilized to derive theor- 
etical expressions for transport parameters other than 
the reduced conductivity it is more realistic in 
the absence of contradictory information to admit 
that the same range of applicability holds also for 
Equation 13. 

3.2. The  p r o d u c t  resistivity x t.c.r. 
Because the product of the resistivity and the elec- 
tronic mean free path should remain constant [33, 34] 
the validity of the Fuchs-Sondheimer theory was 
questioned by several authors [35-37]. In general this 
problem was treated in terms of the Matthiessen's rule 
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Figure 2 Compar ison  of  the present model (curve a, r/)~ c = 0.06) 
with the Cottey model (curves b and c for the respective p values of  
0.9 and 0.4). 

which states that the resistivity, Qf, can be calculated 
by superimposing the contributions to resistivity due 
to all the sources of electronic scatterings, i.e. 

~or = ~vh + ~S + ~i (17) 

where es represents the resistivity due to scattering at 
external surfaces, ~ is the residual resistivity due to 
impurities or frozen-in defects and ~oph is the ideal 
phonon resistivity. Among these resistivity terms only 
the contribution ~ is not temperature dependent so 
that it is possible to rewrite the surface resistivity in the 
form [371 

es(r)  = e (O) + Ao (T) (18) 

where ~(0)  is the residual resistivity due to surface 
scattering and A#s(T ) can be regarded as the devi- 
ation from Matthiessen's rule on the surface scattering 
(referred as DMR hereafter). 

An evident method to evaluate the DMR is to 
start from the theoretical formulae for the surface 
resistivity: 

1 - F(K) 
~s/~0 -- (I9) 

F ( x )  

derived from Equation 2 expressing the film conduc- 
tivity on the basis of the Soffer-Cottey model. 

! 
1 ~'==-::~: . . . .  --4. 

0 .gk  \ "",, c 
d ~ " \  \ \ \ c \ \ \  \ \ , , \  
,d 0.8 

I " - . .  ~ .  d ~ "~-- "~- 
u 0.7F ~ ~ "~---....._ " " ~  " '~---  

e 0.6 iz 

o5  . . I 
O.Ol 0.04 0.07 o.1 0.4. 0.7 1 4 7 10 

R e d u c e d  roughness 

Figure 3 The reduced t.c.r., fir/rio, against the reduced roughness,  
r/2 c, for different values of  the reduced thickness, k. a, b, c, d, e: 
theoretical curves for the respective k values of  I0, 1, 0.1, 0.01 and 
0.001. 
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Figure 4 The reduced product, flfOf/floOo, against 
the reduced thickness, k, for different values of the 
reduced roughness, r/2c. a, b, c, d, e, f: theoretical 
curves for the respective r/2¢ values of 0.01, 0.04, 
0.1, 0.4, 1 and 4. 

R e d u c e d  thickness 

Alternatively, the total film resistivity 0f is expressed 
as 

0 f ( T )  ---- ~ph(T) Jr 0](0) Jr Os(T)  (20) 

so that partially differentiating Equation 20 with 
respect to temperature, T, gives 

#f0f = 00#0 -{- Os#s (21) 

with, for bulk parameters 

G0 = ~ph "[- 01, 00fl0 = 0ph #ph (22) 

Combining Equations 18 and 21 we have 

#fOr = e0fl0 + AesA#s (23) 

Since in the framework of the combined Soffer- 
Cottey theory the asymptotic expression of the sur- 
face resistivity in the limit of large x is [24] (see 
Equation 15) 

0s(T) ~ &(T)20(T), x > 1 (24) 

that is to say that the surface resistivity Qs(T) reduces 
to a temperature independent term, i.e. to the residual 
surface resistivity, it is clear that the only equation 
expressing the Matthiessen's rule is 

#fOr = 00fl0 = Oph~ph (25) 

and that we identify the product A0sA#s with a DMR. 
Hence an alternative and convenient approach to the 
DMR for very thin films (k < 1) consists of studying 
the variations in the product resistivity × t.c.r. 

The theoretical results are displayed in Figs 4 to 6. 
Fig. 4 clearly reveals that in the usual range of applica- 
bility of Equations 2 and 13 the reduced product 
resistivity × t.c.r, approaches unity as soon as the 
reduced thickness takes values greater than 0.4. The 
major effect when considering the surface roughness 
and the angular dependence of the specularity par- 
ameter seems to diminish the variation of the product 
resistivity × t.c.r, with the film thickness, effectively 
taking a constant specularity parameter causes an 
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7 10 Figure 5 Comparison of the present model (curve 
a, r/2 c = 0.06) with the Cottey model (curves b 
and c for the respective p values of 0.9 and 0.4). 
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roughness, r/2c, for different values of the reduced thickness, k. a, 
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increasing size effect (Fig. 5). The apparent decrease in 
the DMR is also evidenced by the Fig. 6 which shows 
that for relatively thick films the reduced surface 
roughness must reach the large value of unity to 
observe a marked DMR. 

4. Discuss ion  
In the following we first discuss previous published 
data on film t.c.r, in terms of the present model. 
Because of difficulty in controlling the bulk properties 
of films in a large domain of thickness this section 
emphasises only a few experimental works in order to 
consider some problems associated with a theoretical 
interpretation of t.c.r, data. Then the theoretical 
results for the DMR are used to try to reinterpret 
the almost complete and comprehensive study of 
Nakamichi and Kino on aluminium strips [37]. 

Most of size effects in the t.c.r, of thin films have 
been analysed in terms of the Fuchs-Sondheimer 
theory by plotting the data in the form 1//~r against l id 
or //fd against d [3-6,  10, 28, 30, 38]. The Fuchs- 
Sondheimer or the Cottey model effectively predicts 
that straight line relations can represent the thickness 
dependence accurately down to k ~ 0.3. Such fits 
yield both the infinitely thick film t.c.r, fl0 and the term 
(1 - f)20 (Fuchs-Sondheimer model) or 20/ln (l/p) 
(Cottey model). Obtaining a linear t.c.r, plot is in 
most cases interpreted as an adequacy of the Fuchs- 
Sondheimer theory to explain the observed size effect. 
To demonstrate how trivial this conclusion is let us 
examine the approximate Equation 16. It is clear that 
for relatively thin films (k > 0.4) with moderately 
rough surfaces (r/ko < 0.06) a straight line behaviour is 
also predicted by the present model. Hence finding a 
simple linear d (or l /d)  dependence in/~fd (or in 1//~f) 
is not necessarily a consequence of a constant specu- 
larity parameter. This point is very important since 
grain-boundary models can also lead to straight line 
relationships when modelling the simultaneous elec- 
tronic scattering at the external surfaces and at the 

grain-boundaries [6]. Thus apparently, when the resis- 
tivity and the temperature coefficient of resistivity 
were measured in a large thickness range, the only 
approach to decide the validity of the present model is 
to compare the overall size effects in film resistivity 
and t.c.r. If this overall size effect is less accentuated 
for the t.c.r, data than for the resistivity data the appli- 
cability of theories involving a constant specularity 
parameter can be questioned. 

Among the various works [7-12] in which an appar- 
ent dependence of the specularity was observed and 
thus which can be understood in terms of the com- 
bined Soffer-Cottey model several [7, 8, 11, 12] exhibit 
size effect in the t.c.r, which are too pronounced for 
very thin films (d < 30.0 nm) to be interpreted only in 
terms of a surface roughness effect. The lack of infor- 
mation on the film structure [7, 11] or on the values of 
the infinitely thick film resistivity and t.c.r. [11, 12] 
does not enable us to establish the real cause of such 
enhanced size effects: for example, a semi-continuous 
nature of films, the existence of a dependence on 
thickness of a large concentration of frozen in point 
defects, a dominant electronic scattering at grain 
boundaries. However some experiments [31, 38, 39] 
reveal differences in the overall size effect in film resis- 
tivity and film t.c.r. It is in particular the case for 
the work by Ghosh and Pal [38] on evaporated nickel 
films, unfortunately the dispersion of their t.c.r, data 
is not appropriate for a meaningful analysis. 

Hence we have only selected two experimental 
works to undertake a comparison with the Softer- 
Cottey model. First we are concerned with measure- 
ments of the resistivity and temperature coefficient of 
resistance made on annealed copper films by Leonard 
and Yu [31]. However these experimental results 
require some attention because values of the reduced 
t.c.r, of very thick films are too low with respect to 
those of the reduced conductivity causing the reduced 
product Qf/~f//~000 to take physically unreasonable 
values, i.e. values smaller than unity. Assuming that 
the measured values of film resistivity are correct since 
in general some difficulty can arise in the estimation of 
film t.c.r. (see for example assumptions 3 and 4 in 
Section 2) a correcting factor is applied to the bulk 
t.c.r. The corrected data together with data on gold 
films [39] are reported in Fig. 7. Examination of Fig. 7 
reveals some slight deviation from the theory. A satis- 
factory fit of the data for gold films is obtained for 
r/,~c ~- 0.08. Since effect in t.c.r, of copper films is 
found to be connected with relatively high values of 
the reduced roughness in the range 0.1 to 0. l 6. These 
works illustrate the difficulties in interpreting t.c.r. 
data. These difficulties can have various origins, in 
particular they can be attributed to errors in the 
evaluation of films t.c.r, such as, 

1. The misleading of the correction factor due to the 
effect of expansion mismatch on the temperature coef- 
ficient of resistance of thin films which can reach 
4 x 10 -5 K -1 for typical substrates [40]. 

2. The use of partially annealed films for which a 
continuous evolution of the film t.c.r, occurs with 
increasing temperatures. 
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Figure 7 Theoretical fit of  published data on (*) copper films [31] 
and (O) on gold films [39]. a, b, c, d, e theoretical Soffer-Cottey 
curves for the respective r/2 c values of  0.08, 0.1, 0.13, 0.16 and 0.2. 

3. The impossibility of knowing the true tempera- 
ture of thin films, the temperature being in general 
measured by using thermal sensors placed on the 
substrate. 

At large thickness small errors in the evaluation of 
temperature or correction factor can evidently cause 
some departures from the expected variation of the 
film t.c.r, with the film thickness. 

But there is a more serious problem that is the 
independency of the geometrical properties of the 
upper film surface on the film thickness. Without 
doubt the morphology of films varies with thickness 
and there is no reason for the surface roughness to 
remain unaffected. From a crude point of view it 
seems that the surface roughness may be more accen- 
tuated in thin films than in thick films but only an 
extensive experimental study of the film flatness (scan- 
ning electron microscopy with backscattered electrons 
for example) would give some idea on this point. 

The recent work by Nakimichi and Kino [37] on 
DMR is from this point of view very interesting 
because these authors studied aluminium strips over a 
large temperature range (1.5 to 60K). Large vari- 

ations in the reduced thickness (k -~ 0.02 to 50) are 
thus obtained which permit one to investigate the size 
effect on a specimen and thus to overcome the diffi- 
culty of assigning precise surface roughness properties 
to various thin specimens. Without ambiguity the 
resistivity, 9s(T) due to surface scattering present a 
hump around 25 K when plotted against temperature. 
This behaviour is accentuated for the thinnest speci- 
mens. Nakimichi and Kino attempted to explain their 
results in terms of the Fuchs-Sondheimer model using 
the theoretical formulae [37] 

0020 
Os = Qr - Oo = ----d-- k [ ~ F s ( k ,  P) - 1] (26) 

where ~Fs(k, P) is the function describing the size 
effect in resistivity on the basis of Fuchs-Sondheimer 
theory. For a given specimen Oo2o/d must remain 
constant with increasing temperature, thus variations 
in the term k [~Fs(k, P) -- 1] with temperature are 
expected to show a qualitative agreement with experi- 
mental results. 

Turning now to the combined Soffer-Cottey model 
the term k [ ~ F S  - -  1] must be replaced by 

, 

and a theoretical representation of the DMR on the 
surface scattering is now obtained by plotting the 
reduced product surface resistivity x thickness 
against the reduced thickness (Fig. 8). We never see 
the maximum around k = 0.8 predicted by the 
Fuchs-Sondheimer theory even for relatively rough 
surfaces (i.e. r/2c --- 0.15 corresponding to p - 0.17 
for an oblique incidence of 45°). This is not surprising 
as the Cottey model for constant p in the range 0.4 to 
0.9 does not evidence any hump in the kOs/Qo against 
k plots (Fig. 9) and that forp = 0.5 the hump observed 
in the Fuchs-Sondheimer model remains attenuated. 
This point is one of the reasons for which these authors 
have retained a constant value of zero for the specu- 
larity parameter, the second being that for p = 0 the 
product Q020 takes a value (~-1.1 x 10 3 p r i m e )  
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which is the closest to that (4 x 10-4pf~m 2) cal- 
culated by the free electron theory. Using a constant 
value of Q020 in the theoretical Fuchs-Sondheimer 
calculation the consistency between the theoretical 
curves and the experimental ones is satisfactory only 
at low temperatures i.e. for small k. Serious departure 
are observed for all specimens as soon as k reaches a 
value of about 2 (Fig. 6, [37]). Note also that the 
Soffer-Cottey results depicted in Fig. 8 should cer- 
tainly fit the data well since for the thinnest aluminium 
strip the experimental points are situated below the 
Fuchs-Sondheimer theoretical ones for k < 0.1 and 
that the inverse situation is observed for k > 0.1. 
Such a behaviour is consistent with the Cottey-Soffer 
model (compare for example Curves B and D in 
respective Figs 8 and 9). 

To partially suppress these discrepancies a tentative 
attempt to fit their data according to Equation 27 in 
the form A~s(r)/0*(0 ) against r or 2o(T)/2o(0) was 
made by using temperature dependent values of 0020. 
The agreement between Fuchs-Sondheimer predic- 
tions and data becomes rather good but it is only due 
to the use of a non-constant ~0)-0 value. Since these 
authors introduce Q0(T)20(T) values presenting a 
maximum around 23 K in theoretical calculations it is 
obvious that this procedure will result in a closer 
agreement between theoretical Fuchs-Sondheimer 
and experimental profiles of AQs(T)/0s(0). Although 
using a temperature dependent 0o20 is a procedure in 
contradiction with the usual statement of constant 
Q020, more important seems the incorrect choice in the 
value of ~020 with respect to value cited in [22] which 
can perhaps result on surface preparation, i.e. on 
oxide coating on aluminium, or the presence of a 
disturbed surface layer. Hence concluding that the 
DMR mainly arises from the spatial variation of the 
electron distribution function and that DMR on the 
impurity scattering can be neglected remains question- 
able in the absence of information on the origin of the 
large 0020 value deduced from the Fuchs-Sondheimer 
plots. It should be pointed out here that a complemen- 
tary study of the film t.c.r, and of the correlated DMR 

AOsAfis would certainly give complementary infor- 
mation. The applicability of the combined Softer- 
Cottey theory and the possible surface scattering 
origin of the DMR would be tested by fitting data 
using simultaneous plots of kA0s/00 and k(AflsAOs/ 
00flo) against k. Unfortunately this procedure is not 
applicable in the temperature range investigated by 
Nakamichi and Kino. But it remains interesting for 
thin films provided that the film resistivity and t.c.r. 
are measured over a large temperature range (40 to 
400 K for example) in order to overcome the problem 
of difference in surface roughness which inevitably 
arises when considering various films. 

5. Conclusion 
Combining the Cottey and the Softer models new 
analytical equations are proposed to describe the 
r.m.s, surface roughness and the angular dependence 
of the t.c.r, of thin metal films. Correlated effects in the 
product resistivity x t.c.r, are studied. The major 
feature in incorporating surface roughness in calcu- 
lation is to markedly diminish the overall size effect in 
t.c.r, with respect, in the one hand to that in the film 
resistivity and in the other hand to that predicted by 
theories involving a constant specularity parameter. 
Moreover a straight line relation can represent the 
thickness dependence in the case of moderately 
smooth surfaces. The deviation from Matthiessen's 
rule on the surface scattering is found to be con- 
veniently represented by the variation in the product 
resistivity x t.c.r, and to be negligible in a large thick- 
ness range except for rough surfaces. 

Attempts to fit previously published data, although 
nearly satisfactory, give evidence of some difficulty in 
interpretation that may be attributed to inaccuracies 
and uncertainties in measurements and in the texture 
of film surfaces. In particular care must be taken that 
films of various thicknesses certainly present differ- 
ences in r.m.s, surface roughness. 

A combined Soffer-Cottey model seems at first 
sight as convenient as the Fuchs-Sondheimer model 
to analyse DMR on the surface scattering in terms of 
theoretical expressions for the surface resistivity. 
However if possible a complementary investigation of 
the alternative DMR A0sAfis is recommended when a 
conclusion on the origin of DMR is required. In view 
of the results and to overcome some serious problems 
the author suggests that experimental data are taken 
in a large temperature range and then compared with 
the theoretical values related to a given specimen since 
a marked variation in temperature ensures a large 
variation in the reduced thickness. 
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